
European Journal of Operational Research 238 (2014) 497–504
Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Stochastics and Statistics
Random sampling: Billiard Walk algorithm q
http://dx.doi.org/10.1016/j.ejor.2014.03.041
0377-2217/� 2014 Elsevier B.V. All rights reserved.

q The work was supported by Laboratory of Structural Methods of Data Analysis
in Predictive Modeling in Moscow Institute of Physics and Technology (‘‘mega-
grant’’ of the Russian Government) and by RFFI Grant 13-07-12111 ofi-m.
⇑ Corresponding author. Tel.: +7 495 334 8829.

E-mail address: gryazina@gmail.com (E. Gryazina).
Elena Gryazina a,⇑, Boris Polyak a,b

a Institute for Control Sciences RAS, Moscow, Russia
b Laboratory of Structural Methods of Data Analysis in Predictive Modeling in Moscow Institute of Physics and Technology, Moscow, Russia
a r t i c l e i n f o

Article history:
Received 22 November 2012
Accepted 29 March 2014
Available online 13 April 2014

Keywords:
Sampling
Monte-Carlo
Hit-and-Run
Billiards
a b s t r a c t

Hit-and-Run is known to be one of the best random sampling algorithms, its mixing time is polynomial in
dimension. However in practice, the number of steps required to obtain uniformly distributed samples is
rather high. We propose a new random walk algorithm based on billiard trajectories. Numerical exper-
iments demonstrate much faster convergence to the uniform distribution.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Generating points uniformly distributed in an arbitrary
bounded region Q � Rn finds applications in many computational
problems (Tempo, Calafiore, & Dabbene, 2004; Rubinstein &
Kroese, 2008).

Straightforward sampling techniques are usually based on one
of the three approaches: rejection, transformation, and composi-
tion. In the rejection approach, the region of interest Q is embed-
ded into a region with available uniform sampler B (usually a
box or a ball). At the next step, samples that do not belong to Q
are rejected. Assume Q is the unit ball, and the bounding region
B is the box ½�1;1�n. Then for n ¼ 2k, the ratio of the volumes of

the box and the ball is equal to q ¼ VolðQÞ
VolðBÞ ¼ pk

k!2k, thus q � 10�8 for

n ¼ 20, so that one has to generate � 108 samples to obtain just
a few of them in Q. For polytopes this ratio can be much smaller.
Another way to exploit pseudo-random number generator for a
simple region B is to map B onto Q via a smooth deterministic func-
tion with constant Jacobian. For instance, to obtain uniform sam-
ples in Q ¼ fx : xT Ax < 1g, A being a positive definite matrix, it
suffices to generate samples y uniformly in the unit ball jjyjj2 < 1

and transform them as x ¼ A�1=2y. Unfortunately, such a transfor-
mation exists just for a limited class of regions. In the composition
approach, the set Q is partitioned into a finite number of sets that
can be efficiently sampled. For instance, a polytope can be parti-
tioned into simplices, but the large number of them makes the pro-
cedure computationally hard.

Other sampling procedures use modern versions of the Monte
Carlo technique based on the Markov Chain Monte Carlo (MCMC)
approach (Gilks, Richardson, & Spiegelhalter, 1996; Diaconis,
2009). For instance, efficient algorithms for computing volumes
using random walks can be found in Dyer, Frieze, and Kannan
(1991), Lovasz and Somonovits (1993), Lovasz and Deak (2012).
One of the most famous and efficient algorithms of the MCMC type
is Hit-and-Run (HR), which was originally proposed by Turchin
(1971) and independently by Smith (1984). The brief description
of the HR algorithm is as follows. At every step HR generates a ran-
dom direction uniformly over the unit sphere and picks the next
point uniformly on the segment of the straight line in the given
direction in Q. HR is applicable to various control and optimization
problems (Polyak & Gryazina, 2008; Polyak & Gryazina, 2011;
Dabbene, Shcherbakov, & Polyak, 2010) as well as to simulation-
based multiple criteria decision analysis (Tervonen, van
Valkenhoef, Basturk, & Postmus, 2013). Unfortunately, even for
simple ‘‘bad’’ sets, such as level sets of ill-posed functions, HR tech-
niques fail or become computationally inefficient.

A variety of applications and drawbacks of the existing tech-
niques provides much room for improving and developing new
sampling algorithms. For instance, there were attempts to exploit
the approach proposed for interior-point methods of convex opti-
mization (Nesterov & Nemirovsky, 1994) and to combine it with
MCMC algorithms. As a result, the Barrier Monte Carlo method
(Polyak & Gryazina, 2010) generates random points with better
uniformity properties as compared to the standard Hit-and-Run.
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Fig. 1. Billiard walk.
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On the other hand, the complexity of every iteration is in general
high enough (the calculation of r2FðxÞ

� ��1=2
is required, where

FðxÞ is a barrier function of the set). Moreover, the Barrier Monte
Carlo method does not accelerate convergence for simplex-like
sets.

In this paper we propose a new random walk algorithm moti-
vated by physical phenomena of gas diffusing in a vessel. A particle
of gas moves with a constant speed until it meets the boundary of
the vessel, then it reflects (the angle of incidence equals the angle
of reflection) and so on. When a particle hits another one, its direc-
tion and speed change. In our simplified model we assume that the
direction changes randomly, while the speed remains the same.
Thus our model combines the ideas of the Hit-and-Run technique
and use of the billiard trajectories. There exists a vast literature
on mathematical billiards, and many useful facts can be extracted
from there (Tabachnikov, 1995; Galperin & Zemlyakov, 1990; Sinai,
1970; Sinai, 1978; Kozlov & Treshchev, 1991). The traditional the-
ory addresses the behavior of one particular billiard trajectory in
different billiard tables, their ergodic properties, and the conditions
for the existence of periodic orbits. In stochastic analogs of the
classical billiard (Evans, 2001), a direction after reflection is chosen
randomly uniformly. Shake-and-Bake algorithms are based on sto-
chastic billiards and generate points on the boundary of a convex
set (Boender et al., 1991). The recently proposed version of the
Shake-and-Bake algorithm (Dieker & Vempala, xxxx) exhibits poly-
nomial-time convergence to the uniform distribution. Our algo-
rithm is aimed at sampling the interior of a set (actually, later in
the text we consider open regions). Besides that, we extend billiard
trajectories of random length keeping the standard reflection law.
Such an incorporation of randomness also improves the ergodic
properties.

The paper is organized as follows. In Section 2 we present a
novel sampling algorithm and prove that it produces asymptoti-
cally uniformly distributed samples in Q. In Section 3 we pay much
attention to some properties of the Billiard Walk (BW), implemen-
tation issues are discussed as well. Simulation of BW for particular
test domains is presented in Section 4. Much attention is devoted
to the capability of BW to get out of the corner, in comparison with
HR. Here we consider just the most demonstrative types of geom-
etry. In Section 4.6 we briefly discuss possible applications of the
algorithm.
2. Algorithm

Assume there is a bounded, open connected set Q � Rn;n P 2,
and a point x0 2 Q . Our aim is to generate asymptotically uniform
samples xi 2 Q ; i ¼ 1; . . . ;N.

The new BW algorithm generates a random direction uniformly
over the unit sphere. Then the next sample is chosen as the end-
point of the billiard trajectory of length ‘. This length is chosen ran-
domly; i.e., we assume that the probability of collision with
another particle is proportional to dt for small time instances dt,
this validates the formula for ‘ in the algorithm below. The scheme
of the method is given in Fig. 1, while the precise routine is as
follows.

2.1. Algorithm of Billiard Walk (BW)

1. Take x0 2 Q ; i ¼ 0; x ¼ x0.
2. Generate the length of the trajectory ‘ ¼ �s log n; n being uni-

form random on [0,1], s is a specified constant parameter of
the algorithm.

3. Pick a random direction d 2 Rn uniformly distributed over the
unit sphere (i.e., d ¼ n=knk, where n 2 Rn has the standard
Gaussian distribution). Construct a billiard trajectory starting
at xi and having initial direction d. When the trajectory meets
the boundary with internal normal s; jjsjj ¼ 1, the direction is
changed as
d! d� 2ðd; sÞs;
where ðd; sÞ is the scalar product.
4. If a point with nonsmooth boundary is met or the number of

reflections exceeds R, go to step 2. Otherwise proceed until
the length of the trajectory equals ‘.

5. i ¼ iþ 1, take the end-point as xiþ1 and go to step 2.

The algorithm involves two parameters s and R and we discuss
their choice below.

We prove asymptotical uniformity of the samples produced by
BW for convex and nonconvex cases separately. The requirements
on Q are different for these two cases, while the sampling algo-
rithm remains the same. Consider the Markov Chain induced by
the BW algorithm x0; x1; . . .. For an arbitrary measurable set
A # Q , denote by PðAjxÞ the probability of obtaining xiþ1 2 A for
xi ¼ x by the BW algorithm. Then PNðAjxÞ is the probability to get
xiþN 2 A for xi ¼ x. We also denote by pðyjxÞ the probability density
function for PðAjxÞ, i.e. PðAjxÞ ¼

R
A pðyjxÞdy.

Theorem 1. Assume Q is an open bounded convex set in Rn, the
boundary of Q is piecewise smooth. Then the distribution of points xi

generated by the BW algorithm tends to the uniform one over Q, i.e.

lim
N!1

PNðAjxÞ ¼ kðAÞ

for any measurable A # Q ; kðAÞ ¼ VolðAÞ=VolðQÞ and any starting
point x.
Proof. First, the algorithm is well-defined: at step 4 with zero
probability the algorithm sticks at a point with nonsmooth bound-
ary. On the other hand ‘ and d are chosen in such a way that, with
positive probability, xiþ1 is obtained by less than R reflections (see
detailed discussion of ‘‘bad’’ situations in SubSections 3.1 and 3.2).

In view of Theorem 2 in Smith (1984) based on the asymptotic
properties of Markov Chains, the two assumptions on pðyjxÞ imply
that the uniform distribution over Q is a unique stationary
distribution, and it is achieved for any starting point x 2 Q . The
first assumption requires the existence of pðyjxÞ and its symmetry;
the second assumption claims its positivity pðyjxÞ > 0 for all
x; y 2 Q .
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Now we show that there exists a probability density function;
i.e. for any x; y 2 Q , the transition probability from x to a small
neighborhood dy of y is proportional to the volume of dy. Among
the trajectories proceeding from x to dy, there exist a conic bundle
of trajectories with no reflections, as well as some trajectories with
1;2; . . . ;R reflections. For a bundle of trajectories with no reflec-
tions PðdyjxÞ � PðdhÞPðd‘Þ, where PðdhÞ is the probability of choos-
ing the spatial angle and Pðd‘Þ is the probability of choosing a
certain trajectory length ‘ 2 d‘ while p � q means ‘‘p is propor-
tional to q’’. PðdhÞ is proportional to the volume of the base of the
cone, Pðd‘Þ � d‘, thus PðdyjxÞ � volðdyÞ.

The bundles of trajectories with reflections are also cones with
small spatial angle dh. The area of reflection with a smooth
boundary can be approximated as plain region. Then reflection
does not change the geometry of the bundle, and the proof for this
situation remains the same as for the bundle of trajectories with no
reflections. Hence, pðyjxÞ exists for all x; y 2 Q .

For convex bodies, the positivity of pðyjxÞ is obvious, all the
points are reachable by a trajectory with no reflections.

The symmetry of the probability density function follows from
the uniformity of the distribution of the directions and reversibility
of a billiard trajectory due to the reflection law: the angle of
incidence is equal to the angle of reflection. Therefore, all the
assumptions on pðyjxÞ are satisfied, and the distribution of points xi

generated by the BW algorithm tends to the uniform distribution
on Q. h
Theorem 2. Assume Q is a bounded and open set, the boundary of Q is
piecewise smooth and for all x; y 2 Q there exists a piecewise-linear
path such that it connects x and y, lies inside Q and has no more than
B linear parts (B is an arbitrary positive integer). Then the distribution
of points xi generated by the BW algorithm tends to the uniform dis-
tribution on Q in the same sense as in Theorem 1.
Proof. Again, the algorithm is well defined: with probability one a
point xiþ1 – xi is found for arbitrary xi 2 Q .

All the constraints on Q are important. The existence of a
piecewise-linear path implies connectedness and guarantees that,
starting from any point, we can reach a measurable neighborhood
of any other point in Q. Boundedness is necessary to define the
uniform distribution on Q and to prevent the trajectories to go to
infinity. Openness allows us to connect any two points with a tube
of nonzero measure. Hence, there exists a piecewise linear
trajectory connecting two arbitrary points.
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Fig. 2. Convex and nonconvex domains where a
Consider pNðyjxÞ, the probability density function of PNðAjxÞ. The
inequality pNðyjxÞ > 0 holds for all integer N > B. The equality
pðxiþ1jxiÞ ¼ pðxijxiþ1Þ (reversibility) holds for every pair of consec-
utive points due to the reflection law: the angle of incidence is
equal to the angle of reflection. Therefore, pNðyjxÞ ¼ pNðxjyÞ.

Hence, the distribution of the subsequence x0; xN; x2N ; . . ., tends
to the uniform one for N > B. The same is true for every
subsequence xi; xNþi; x2Nþi; . . .. Since all the subsequences have
asymptotically uniform distribution, the distribution of points xi

generated by the BW algorithm tends to the uniform distribution
on Q. h

There exist plenty of nonconvex domains that satisfy the condi-
tions of Theorem 2. For instance, an estimate of B for the toroid is
given in Subsection 4.8. Note that the constant B characterizes the
geometry of Q.

3. Discussion

We discuss some implementation issues first.

3.1. Nonsmooth boundary points

The measure of the set of points belonging to nonsmooth
boundary is zero but the probability of hitting the nonsmooth part
of the boundary is nonzero for some starting x0. For instance, con-
sider two similar convex and nonconvex sets

Q 1 ¼ x 2 R2 : x2
1=4þ x2

2 < 1; x1 <
ffiffiffi
3
p
� jx2j

n o
;

Q 2 ¼ x 2 R2 : x2
1=4þ x2

2 < 1; x1 <
ffiffiffi
3
p
þ jx2j

n o
;

both being truncated ellipses (Fig. 2). A large portion of directions
makes trajectories of length ‘ P 4 starting at the focus
x0 ¼ �

ffiffiffi
3
p

; 0
� �

hit the nonsmooth boundary at the second focus
x1 ¼ ð

ffiffiffi
3
p

; 0Þ. The reason is that we take a particular starting point.
The measure of ‘‘bad’’ starting points is zero and this effect never
happens when the starting point is taken randomly with some
distribution.

3.2. Choice of s and R

To run the algorithm we need to specify the parameters s and R.
The value of s strongly affects the behavior of the method. For s
small enough, BW becomes slower than HR; it behaves as a
ball walk with radius s. Empirical observations show that fast
x1
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convergence to the uniform distribution is achieved for s � diamQ ,
where diamQ is the diameter of the set Q.

We restrict the number of reflections by R for every trajectory
(step 4 of the Algorithm). The goal is to avoid situations when
the trajectory length remains less than ‘ after a large number of
reflections (a typical example is addressed in SubSection 4.4).
The choice of R is mostly focused on eliminating computationally
hard trajectories. The value of R should be large enough to imple-
ment most of the trajectories. But R also depends on s. The longer
the trajectory one needs to implement, the more reflections are
required. We usually take R ¼ 10n to make it dimension
dependent.

3.3. Preliminary transformation of Q

If Q is ‘‘ill-shaped,’’ sometimes it can be improved with its linear
transformation. For instance, if Q is a box Q ¼ fx 2 Rn : jxij <
ai; i ¼ 1; . . . ;ng, and it is far from being cubic (min ai=max ai � 1),
a simple scaling transforms Q into a cube. A similar scaling trans-
forms an ellipsoid into a ball. In the general case,the following scal-
ing can be helpful. Assume Q has a barrier FðxÞ defined on Q such
that FðxÞ ! þ1 as x! @Q . In Nesterov and Nemirovsky (1994), a
special class of self-concordant barriers is considered. For instance,
for the polytope defined by m linear inequalities Q ¼ fx 2 Rn :

ðai; xÞ < bi; i ¼ 1; . . . ;mg, this barrier is FðxÞ ¼ �
P

i logðbi � ðai; xÞÞ.
Then it is easy to find an approximate minimum x� of FðxÞ. Dikin
ellipsoid E ¼ fx : ðHðx� x�Þ; ðx� x�ÞÞ 6 1;H ¼ r2Fðx�Þg, lies in Q
and it is a good approximation of the polytope Q. Hence we can
calculate the linear mapping T ¼ H�1=2; by generating directions
d0 ¼ Td, where d is uniformly distributed over the unit sphere, we
can strongly accelerate the convergence. However sometimes none
of the transformations can improve the shape of the set; the
simplex is known to be the worst-case example.
3.4. Boundary oracle and normals

Both the HR and BW algorithms require computation of the
intersections of a straight line (defined by the point xk and the
direction d of the trajectory) with the set Q. We call Boundary Ora-
cle (BO) the procedure that calculates the boundary of the segment
½t;�t�, where

t ¼ max
t<0
ft : xk þ td 2 @Qg; �t ¼min

t>0
ft : xk þ td 2 @Qg

(we assume that Q is convex, otherwise the point of the first inter-
section of the straight line and the boundary of Q is taken). Thus HR
needs both t and �t for every iteration, and the computational cost of
HR is equal to two BO per sample. BW takes �t for every reflection
and the computation cost of BW is one BO per reflection. In most
applications, finding BO is not a problem. For instance, if Q is a poly-
tope defined by m linear inequalities

Q ¼ fx 2 Rn : ðai; xÞ < bi; i ¼ 1; . . . ;mg

then BO ½t; �t� can be written explicitly. Calculate
ti ¼ bi�ðai ;xkÞ

ðai ;dÞ ; i ¼ 1; . . . ;m, and take

t ¼ max
i:ti<0

ti; �t ¼min
i:ti>0

ti:

Numerous examples of BO for other sets Q (for instance, defined
by Linear Matrix Inequalities) can be found in Polyak and Gryazina
(2008), Polyak and Gryazina (2011), Dabbene et al. (2010).

Billiard walks also require the calculation of normals s at the
boundary points. In most applications it is not hard; for instance,
for a polytope we have s ¼ ai, where i is the index for which the
maximum or the minimum in the formulas above is achieved.
3.5. A comparison of HR and BW

Our goal in the test examples below is to compare HR and BW.
We use several tools for this purpose. Sometimes theoretical con-
siderations can help to compare the number of iterations to quit
a corner. It is well known that HR may require too many iterations
to get out of the corner, see estimates in Lovasz and Vempala
(2004). We will show that estimates for BW are much more opti-
mistic for many particular examples. On the other hand, we use
simulation for the comparison as well. We exploit different tools
to demonstrate that one sampling set is closer to uniform than
another. Sometimes graphical figures in the 2D plane are quite evi-
dent. In other cases we demonstrate strong serial correlation in the
samples. Finally, we use a parametric partition of Q and compare
the number of empirical frequencies with the theoretical number
for the uniform distribution via the v2 criterion.

To make final conclusions on the comparison of the two meth-
ods, we should have the following in mind. Of course, computation-
ally BW is harder than HR. It requires more BO calculations, each
reflection at the boundary also requires extra calculations for nor-
mals. We characterize the computational complexity by the num-
ber of calls to the BO and compare the outcomes of HR and BW
obtained from the same number of BO (the number of samples is
different in this case). The observed acceleration of convergence
to the uniform distribution often makes BW preferable to HR.
4. Test sets and simulation

Some sets below are unbounded; we present them to analyze
the behavior at a corner. We say that a trajectory quits the corner
if it goes to infinity.

4.1. Plane angle

Let the angle Q � R2 be equal to a < p. Then any billiard trajec-
tory quits Q after no more than N� ¼ dp=ae reflections for all initial
points and initial directions; here dae stands for the smallest inte-
ger greater than or equal to a. The proof of this fact is as follows: if
we reflect the angle N times around its side, billiard trajectory
becomes the straight line. Every intersection of the line and the
angle side corresponds to the reflection of the billiard trajectory.
A straight line cannot intersect any straight line (not coinciding
with itself) twice, and the total number of intersections with the
reflected angle sides is no more than N�. Thus N� reflections are
enough to quit the corner.

For HR we quit Q with probability 1� ð1� a=pÞN after no more
than N iterations. For N ¼ N� being large enough, HR quits Q with
probability 1� 1=e ¼ 0:63, while BW quits with probability one.

It is of interest to estimate the average number of reflections
(over random initial directions). Consider the triangle Q ¼ fx 2
R2 : jx1j 6 atan a

2 ; x2 6 1g with one of the angles equal to a. Let
the BW trajectories start at x0 ¼ ð0; 0:1Þ and calculate the number
of reflections until the trajectory reaches the line x2 ¼ 1 (i.e. quits
the corner). Fig. 3 depicts 25 trajectories plotted for a ¼ p=4.

The results of 5000 runs and various a are given in Table 1. The
empirical observations show that the average number of reflec-
tions for BW is equal to N�=2. For HR we calculate the number of
iterations until BO reaches the line x2 ¼ 1.

We conclude that BW is slightly more efficient that HR.

4.2. Multidimensional case: polyhedral cone Q

For a polyhedral cone there exists a number M which does not
depend on the initial data, such that any billiard trajectory quits Q
after no more than M reflections (see Sinai, 1978, also Tabachnikov,
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Table 1
The mean and standard deviation (in parentheses) for the number of BW reflections
and the number of HR iterations required to quit the angle a.

a BW HR

p=2 2.28 (0.87) 2.37 (1.74)
p=4 3.08 (1.3) 3.75 (2.98)
p=10 5.94 (2.93) 8.23 (7.1)
p=50 25.08 (14.46) 39.25 (34.54)
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Fig. 4. 200 points generated by BW for domain (1).

Table 2
The number of reflections required to implement the trajectory of length 1 for domain
(1) starting at x0 ¼ ð0:9; eÞ in the direction d ¼ ð�1; 0Þ.

e Number of reflections

1e�3 746
5e�4 1851
4e�4 2480
3e�4 3617
2e�4 6158
1.1e�4 13,496
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1995, Theorem 7.17). However M depends on the geometry of Q. If
M is large (M > R) then sometimes the BW algorithm gets stuck at
xi. However it can be proved that BW is well defined with probabil-
ity one.

4.3. Orthant Q ¼ fx 2 Rn : x > 0g

It is easy to show that a billiard trajectory quits Q after no more
than n reflections for an arbitrary initial point and initial direction.
Indeed, for a given initial direction d, every reflection makes one of
the components positive (if d > 0 componentwise, the trajectory
quits Q). Let I ¼ fi : di < 0g, then every reflection eliminates at least
one negative component of d, and after no more than n reflections
we have I ¼ ;.

A HR trajectory quits Q with probability 2�ðn�1Þ after a single
iteration, thus it requires approximately 2n�1 iterations to quit Q
with probability 1� 1=e ¼ 0:63. The probability to quit the orthant

after no more that n iterations is 2�ðn�2Þð1� 2�nÞ for HR and it
decreases dramatically as the dimension n grows. Hence BW is
much more efficient than HR for this case. Simulations for the cube
(SubSection 4.6) confirm this statement.

All these results show that a polyhedral corner is not a problem
for BW in contrast to HR, where the distance of the initial point to
the corner and the size of the angle plays a significant role. The
results can be extended to curvilinear corners with nondegenerate
linear approximation, i.e. if a linear approximation of a corner is a
polyhedral cone with nonempty interior.

4.4. Concave corner

In concave corners (that is, corners with concave boundaries)
pure billiard trajectories may expose a large number of reflections
(Sinai, 1970). Consider a typical domain (Fig. 4) with concave angle

Q ¼ x 2 R2 : �x4
1 < x2 < x4

1; x1 P 1
n o

: ð1Þ
For a fixed ‘, the length of a billiard trajectory may remain less than
‘ after a large number of reflections. Indeed, start the trajectory at
the point x0 ¼ ð0:9; eÞ; e being small enough, fix ‘ ¼ 1;d ¼ ð�1; 0Þ
and compute the number of reflections required. The results are
shown in Table 2. As one can notice, the number of reflections
increases dramatically as the second coordinate of x0 tends to zero,
and even for x0

2 ¼ 10�4, the trajectory can not be implemented. To
avoid these situations we restrict the number of reflections by R
in the BW algorithm. But, in general, these ‘‘bad’’ directions are rare.
Fig. 4 depicts 200 points for domain (1), the average number of
reflections per point is six.

4.5. Strip

For domains of the form Q ¼ fx 2 R2 : 0 < x2 < 1; jx1j < Mg;M
being large enough, HR and BW demonstrate different abilities to
walk along x1. Below we show that if one counts the average num-
ber of steps per one BO call, BW is approximately 6 times faster. For
a random line intersecting the strip, let Dx be the horizontal com-
ponent of the intersection averaged over directions. HR takes 2 BO
per step, and the average shift along x1 for uniformly distributed
initial point is

DxHR ¼
1
2

Dx
Z 1

0

Z 1

0
jx1 � x2jdx1dx2 ¼

1
6

Dx

per one BO. BW gives DxHR ¼ 1=2Dx for the first reflection (1 BO)
and then Dx for every subsequent BO. The average shift along x1

produced by BW after N BO is DxBW ¼ 1� 1
2N

� �
Dx per one BO. Thus

BW is 6 times more efficient than HR.

4.6. Cube

For the unit cube Q ¼ fx 2 Rn : 0 < x < 1g (the inequality is
understood component-wise), we can compute the next point of
the BW algorithm explicitly.
1.01e�4 > 5 	 10



Table 5
The observed frequency of the BW points in the slab j in the ith coordinate direction
and the v2 statistics.

1 2 3 4 5 6 7 8 9 10 v2 st.

1 198 204 188 218 216 224 218 242 191 249 17.22
2 234 207 196 226 204 196 225 230 220 210 8.21
3 210 230 218 201 202 214 232 200 222 219 5.6
4 242 243 203 198 202 232 221 208 220 179 17.7
5 211 231 184 236 229 206 210 235 192 214 13.52
6 209 193 242 205 216 208 212 223 222 218 7.12
7 190 223 226 233 197 217 226 195 200 241 13.42
8 200 231 199 191 207 211 212 220 247 230 12.46
9 231 213 212 224 189 234 209 225 197 214 8.6

10 204 237 227 198 201 230 208 215 211 217 7.11
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At the current point x, for given ‘ and d calculate ki ¼ bxi þ ‘dic
(bxc is the maximal integer less than or equal to x) and walk to y:

yi ¼
xi þ ‘di � ki; ki is even
1� ðxi þ ‘di � kiÞ; ki is odd

�
; i ¼ 1; . . . ; n:

Of course there is no need to apply MCMC algorithms for random
sampling in the cube, one can generate a vector of n independent
uniform random variables over ½0;1�. Moreover, the shape of the
cube is so nice that the distribution of the HR points converges to
the uniform fast enough. Nevertheless it is of interest to compare
BW and HR for this simplest case.

For various dimensions n we sample NBW ¼ 1000 points by the
BW algorithm and calculate the amount NBO of the BO calls needed.
Then we sample NHR ¼ dNBO=2e points by HR. In implementing BW,
we take s ¼

ffiffiffi
n
p

;R ¼ 10n, starting point is uniform random for both
sampling algorithms.

First we examine serial correlation for points produced by dif-
ferent samplers. To judge about serial correlation, we partition
the unit cube into qi; i ¼ 1; . . . ;2n, small cubes of equal volumes.
Then we calculate the empirical probability to proceed between
different parts Pðxiþ1 R qjjxi 2 qjÞ. Table 3 shows the results as
compared to the theoretical probability U for independent uni-
formly distributed points (which is 1� 2�n). One can see that serial
correlation is much stronger for HR than for the BW samples.

Then we make the v2 frequency test for 10,000 HR points in R10.
We take 10 equal volume slabs in the ith coordinate direction for
i ¼ 1; . . . ;10, and make 10 v2 tests all together. The results are
shown in Table 4.

We start BW with computational complexity 20,000 BO and
obtain 2148 points (� 215 per slab). The v2 frequency test results
are shown in Table 5.

Upper and lower v2 values for 10% statistical significance for 9
degrees of freedom are ½3:3;16:9� (for two tailed v2 test). Thus HR
fails all 10 v2 tests while BW fails just 2 out of the 10 tests.

4.7. Simplex

The next test set is the standard n-dimensional simplex

Q ¼ xi > 0;
X

xi ¼ 1; i ¼ 0;1; . . . ;n
n o

:

The simplex is a set with many corners and the geometry of simplex
cannot be improved by any affine transformation. We know that for
Table 3
Empirical probability to proceed between different parts of the cube for BW and HR,
and the uniform distribution.

n BW HR U

10 0.902 0.391 0.99902344
25 0.957 0.388 0.99999997
50 0.976 0.383 0.99999999

Table 4
The observed frequency of the HR points in the slab j in the ith coordinate direction and

1 2 3 4 5

1 927 1087 1096 985 987
2 1129 969 884 1026 1049
3 1135 1134 970 951 983
4 1008 1029 977 1046 961
5 820 1004 1092 1043 956
6 1001 1068 992 1014 1051
7 1015 890 905 916 1010
8 1130 1098 1074 1078 1032
9 913 983 980 1059 1023

10 1056 1013 966 972 950
HR walk it takes a lot of iterations to get out of a corner, thus it is
interesting to compare HR and BW.

Smooth boundary of Q is specified by the points
@Q ¼ fx 2 Rnþ1 : xk ¼ 0; xi – 0; i ¼ 0; . . . ;n; i – kg, and the internal
normal of unit length for these points is

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nðnþ 1Þ

s
�1; . . . ; n|{z}

k

; . . . ;�1

2
4

3
5T

:

The length of any edge of the simplex is
ffiffiffi
2
p

for every dimension n,
the choice of the parameter s ¼

ffiffiffi
2
p

seems reasonable.
Note that for n ¼ 2, the samples visually look uniformly distrib-

uted for both algorithms. To decide about uniformity more rigor-
ously in the multidimensional case, consider the sequence of
enclosed simplices Sa ¼ fx 2 Rnþ1 : xi P a;

P
xi ¼ 1g; 0 6 a 6 1

nþ1.

For a ¼ 0; S0 is the initial simplex, and for a ¼ 1
nþ1, the simplex Sa

contains one point. Let f̂ ðaÞ be the portion of points contained in
Sa, and denote f ðaÞ ¼ volSa=volS0 ¼ ð1� ðnþ 1ÞaÞn. Fig. 5 shows

f̂ ðaÞ for n ¼ 50; N ¼ 300; x0 ¼ f1=ðnþ 1Þ; . . . 1=ðnþ 1Þg. The red
line corresponds to the uniformly distributed points, the black line
describes the distribution for the HR points, and the blue line for
BW points. We conclude that for BW samples, the empirical values

of f̂ ðaÞ are much closer to the mean value f ðaÞ than for the HR
samples.

We also perform two v2 tests for n ¼ 10. For the first one we
partition Q into 10 simplices Q ¼ S0 
 Sa1 
 . . . 
 Sa10 ¼ ; such that
VolðSai

n Saiþ1 Þ ¼ VolSa9 ¼ 1
10 VolS0. These differences Si n Saiþ1 are of

various geometry but their volumes are equal. For the second test
we take nþ 1 subsets of the same volume and geometry, these
subsets Q i contain points mostly close to the selected vertex v i:

Qi ¼ fx 2 Q : jjx� v ijj2 < jjx� v jjj2; j – ig:

Restricting ourselves to 20,000 BO, we obtain 10,000 HR points and
about 2000 BW points. Tables 6 and 7 present the experimental
results.
the v2 statistics.

6 7 8 9 10 v2 st.

992 963 979 1000 984 24.64
963 935 959 983 1103 52.31
976 980 961 822 1088 81.7
870 932 971 1117 1089 49.05
960 1107 1174 916 928 100.23

1004 944 958 935 1033 17.71
953 1028 982 1077 1224 87.93

1021 824 956 886 901 95.24
902 1017 1050 1011 1062 28.63

1002 951 979 1016 1095 19.87
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Fig. 5. The portion of points contained in Sa for uniformly distributed points (red),
HR (black) and BW (blue). n ¼ 50, 300 points. The horizontal axis corresponds to the
parameter a. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 6. The ðx1; x2Þ-projection of HR points (black) and BW points (blue) for toroid
(2). n ¼ 10; NBW ¼ 500; NHR ¼ 1764. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Recalling the upper and lower v2 test values ½3:3;16:9�, we con-
clude that the BW points fit uniform distribution while the HR
points do not.

4.8. Toroid

Both the HR and BW algorithms are applicable to nonconvex
sets. Consider the toroid formed by an n-dimensional ball of radius
r with its center rotating over a circle in the ðx1; x2Þ-plane:

Q ¼ fx 2 Rn : jjx� cxjj < rg; ð2Þ

where cxi ¼ xiffiffiffiffiffiffiffiffiffi
x2

1þx2
2

p , i = 1, 2, cxi ¼ 0; i > 2.

The conditions of Theorem 2 are satisfied with

B ¼ p
2 arccos1�r

1þr

� 	
þ 1, i.e. for all x; y 2 Q there exists a piecewise-linear

path such that it connects x and y, lies inside Q, and has no more
than B linear parts.

Fig. 6 depicts 500 BW samples and 1764 HR points (projected
onto the ðx1; x2Þ-plane) for the set (2) of dimension 10 and
r ¼ 1=3. The number of samples is different because implementa-
tion of 500 BW samples requires 1764 BO calculations. HR points
are plotted with black dots, BW points with blue ones.
Table 6
The observed frequencies for the HR and BW points in the subsets Sai

n Saiþ1
and the v2 st

1 2 3 4 5 6

HR 855 917 925 897 997 9
BW 152 175 163 177 189 1

Table 7
The observed frequencies for the HR and BW points in the subsets Q i; i ¼ 0; . . . ;10 and th

0 1 2 3 4 5

HR 976 751 1050 1018 826 676
BW 172 188 167 177 158 179
It can be easily seen that the angle distrubition of the BW points
is much more uniform than those for the HR points, the latter
remain in the neighborhood of the initial point. Note that the visual
lack of uniformity in the radial direction is an ‘‘optical effect’’
because we provide a 2D projection of the 10D picture.

5. Applications

In this paper we do not address numerous applications of the
new version of random sampling. We can mention just few of
them: global optimization (in particular, concave programming),
control problems, robustness issues, numerical integration, calcu-
lation of the volume and the center of gravity and so on; see, for
instance, our previous papers (Polyak & Gryazina, 2008; Polyak &
Gryazina, 2011; Dabbene et al., 2010; Polyak & Gryazina, 2010).
We plan to consider these applications in future works.
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7 8 9 10 v2

78 1024 1025 1080 1303 144.04
92 206 182 214 241 6.06

e v2 statistics.

6 7 8 9 10 v2

1084 521 1028 1424 947 697.54
176 154 147 178 195 12.1
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